
For the Week of May 3rd
Keep Your Background Processes Running
In Visual Basic, if you make a call to the MSGBOX function all other background processes that
you may have running (counters, timer events, etc) are stopped until the user acknowledges the
Msgbox dialog box. This can be potentially devastating if you write an application that runs
unattended.
To overcome this problem, you must use the Windows API call for the MessageBox function. It
looks and acts the same as the VB "msgbox" function, but does not stop the background processes
from running.
In a module, paste the following API declaration:
Declare Function MessageBox Lib "user32" Alias "MessageBoxA" (ByVal hwnd As
Long, ByVal lpText As String, ByVal lpCaption As String, ByVal wType As Long) As
Long
Next, on the default form add a timer control, 2 command buttons, and a label. Then type the
following code into the form, which demonstrates the VB msgbox and API MessageBox functions.
That's all there is to it.
Private Sub Command1_Click()
MsgBox "The Timer STOPS!"
End Sub
Private Sub Command2_Click()
MessageBox Me.hwnd, "Notice the timer does not stop!", "API Call", _ vbOKOnly +
vbExclamation
End Sub
Private Sub Timer1_Timer()
Label1.Caption = Time
End Sub

For a Week of August 2nd
A new Format function
VB 5 has the Format command that almost works the same as Print. The difference is that Format
shortens the output string length if all the format characters are not used. To work around this I
wrote a Public Function called FormatNum.
Public Function FormatNum(MyNumber As Double, FormatStr As String) As String

 ' This Function returns number formatted as a string
 ' with the desired minimum number of characters
 ' MyNumber - Use CDbl(MyNumber) in the function
 ' call to prevent type mismatch error.
 '
 FormatNum = Format$(MyNumber, FormatStr)
 If Len(FormatNum) < Len(FormatStr) Then
 FormatNum = Space$(Len(FormatStr) - Len(FormatNum)) & FormatNum
 End If
End Function
Use this function like this:

Print #FileNumber, FormatNum(CDbl(MyVariable), " #### ")

Febuary 2, 1998
Showing long ListBox entries as a ToolTip
By Matt Vandenbush, matt_vandenbush@whbrady.com
Sometimes the data you want to display in a list is too long for the size of ListBox you can
use. When this happens, you can use some simple code to display the ListBox entries as
ToolTips when the mouse passes over the ListBox.
First, start a new VB project and add a ListBox to the default form. Then declare the
SendMessage API call and the constant (LB_ITEMFROMPOINT) needed for the operation:
Option Explicit

'Declare the API function call.
Private Declare Function SendMessage _
Lib "user32" Alias "SendMessageA" _
(ByVal hwnd As Long, _
ByVal wMsg As Long, _
ByVal wParam As Long, _
lParam As Any) As Long
' Add API constant
Private Const LB_ITEMFROMPOINT = &H1A9
Next, add some code to the form load event to fill the ListBox with data:
Private Sub Form_Load()
'
' load some items in the list box
With List1
.AddItem "Michael Clifford Amundsen"
.AddItem "Walter P.K. Smithworthy, III"
.AddItem "Alicia May Sue McPherson-Pennington"
End With
'
End Sub
Finally, in the MouseMove event of the ListBox, put the following code:
Private Sub List1_MouseMove(Button As Integer, Shift As Integer, _
X As Single, Y As Single)
'
' present related tip message
'
Dim lXPoint As Long
Dim lYPoint As Long
Dim lIndex As Long
'
If Button = 0 Then ' if no button was pressed
lXPoint = CLng(X / Screen.TwipsPerPixelX)
lYPoint = CLng(Y / Screen.TwipsPerPixelY)
'
With List1
' get selected item from list
lIndex = SendMessage(.hwnd, _
LB_ITEMFROMPOINT, _
0, _
ByVal ((lYPoint * 65536) + lXPoint))
' show tip or clear last one
If (lIndex >= 0) And (lIndex <= .ListCount) Then
.ToolTipText = .List(lIndex)
Else
.ToolTipText = ""
End If
End With '(List1)
End If '(button=0)
'
End Sub

Febuary 9, 1998
Simple file checking from anywhere
By Matthew Kent, mace@pacificcoast.net
To keep my applications running smoothly, I often need to check that certain files exist. So, I've
written a simple routine to make sure they do. Here it is:
Public Sub VerifyFile(FileName As String)
'
On Error Resume Next
'Open a specified existing file
Open FileName For Input As #1

'Error handler generates error message with file and exits the routine
If Err Then
MsgBox ("The file " & FileName & " cannot be found.")
Exit Sub
End If
Close #1
'
End Sub

Now add a button to your form and place the code below behind the "Click" event.

Private Sub cmdVerify_Click()
'
Call VerifyFile("MyFile.txt")
'
End Sub

November 16, 1998
Figuring out the current screen resolution
You can use the following small piece of code to detect the current screen resolution and then act
on the information - for instance, by resizing form objects to suit the user's resolution.
Dim x,y As Integer
 x = Screen.Width / 15
 y = Screen.Height / 15
 If x = 640 And y = 480 Then MsgBox ("640 * 480")
 If x = 800 And y = 600 Then MsgBox ("800 * 600")
 If x = 1024 And y = 768 Then MsgBox ("1024 * 768")

June 29, 1998
Creating a incrementing number box
submitted by Bryan Shoemaker
www.shadow.net/~fubar
You can't increment a vertical scroll bar's value -- a fact that can become annoying. For
example, start a new project and place a text box and a vertical scroll bar on the form. Place
the vertical scroll bar to the right of the text box and assign their Height and Top properties
the same values. Assign the vertical scroll bar a Min property value of 1 and a Max value of
10. Place the following code in the vertical scroll bar's Change event:
Text1.Text = VScroll1.Value
Now press [F5] to run the project. Notice that if you click on the bottom arrow of the vertical
scroll bar, the value increases; if you click on the top arrow, the value decreases. From my
perspective, it should be the other way around.
To correct this, change the values of the Max and Min properties to negative values. For
example, end the program and return to the design environment. Change the vertical scroll
bar's Max value to -1 and its Min value to -10. In its Change event, replace the line you
entered earlier with the following:
Text1.Text = Abs(Vscroll1.Value)
Now press [F5] to run the project. When you click on the top arrow of the vertical scroll bar,
the value now increases. Adjust the Height properties of the text box and the scroll bar so
you can't see the position indicator, and your number box is ready to go.

March 23, 1998
Creating a new context menu in editable controls
By Antonio Almeida, future.systems@mail.telepac.pt
This routine will permit you to replace the original context menu with your private context menu in
an editable control.
Add the following code to your form or to a BAS module:

Private Const WM_RBUTTONDOWN = &H204 Private Declare Function SendMessage Lib
"user32" Alias "SendMessageA" (ByVal hwnd As Long, ByVal wMsg As Long, ByVal
wParam As Long, lParam As Any) As Long
Public Sub OpenContextMenu(FormName As Form, MenuName As Menu)

'Tell system we did a right-click on the mdi
Call SendMessage(FormName.hwnd, WM_RBUTTONDOWN, 0, 0&)
'Show my context menu
FormName.PopupMenu MenuName
'
End Sub
Next, use the Visual Basic Menu Editor and the table below to create a simple menu.
Caption Name Visible
Context Menu mnuContext NO
...First Item mnuContext1
...Second Item mnuContext2
Note that the last two items in the menu are indented (...) one level and that only the first
item in the list ("Context Menu") has the Visible property set to NO.
Now add a text box to your form and enter the code below in the MouseDown event of the
text box.
Private Sub Text1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y
As Single)

If Button = vbRightButton Then
Call OpenContextMenu(Me, Me.mnuContext)
End If

End Sub
Note: If you just want to kill the system context menu, just comment out the line:
FormName.PopupMenu MenuName
in the OpenContextMenu routine.

March 30, 1998
Dragging items from a list to another one
By Bassam Alkharashi, bkhrashi@kacst.edu.sa
Here's a way that you can let users drag items from one list and drop them in another one.
Create two lists (lstDraggedItems, lstDroppedItems) and a text box (txtItem) in a form
(frmTip).
Put the following code in the load event of your form.
Private Sub Form_Load()
' Set the visible property of txtItem to false
txtItem.Visible = False
'Add items to list1 (lstDraggedItems)
lstDraggedItems.AddItem "Apple"
lstDraggedItems.AddItem "Orange"
lstDraggedItems.AddItem "Grape"
lstDraggedItems.AddItem "Banana"
lstDraggedItems.AddItem "Lemon"
'
End Sub
In the mouseDown event of the list lstDraggedItems put the following code:
Private Sub lstDraggedItems_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y As Single)
'
txtItem.Text = lstDraggedItems.Text
txtItem.Top = Y + lstDraggedItems.Top
txtItem.Left = X + lstDraggedItems.Left
txtItem.Drag
'
End Sub
In the dragDrop event of the list lstDroppedItems put the following code:

Private Sub lstDroppedItems_DragDrop(Source As Control, X As Single, Y As
Single)
'
If lstDraggedItems.ItemData(lstDraggedItems.ListIndex) = 9 Then
Exit Sub
End If
' To make sure that this item will not be selected again
lstDraggedItems.ItemData(lstDraggedItems.ListIndex) = 9
lstDroppedItems.AddItem txtItem.Text
'
End Sub
Now you can drag items from lstDraggedItems and drop them in LstDroppedItems.
Note that you cannot drag from the second list to the first. Also, the dragged item remains in
the first list. You'll have to address those limitations yourself.

Top of Page

April 06, 1998
Add Dithered Backgrounds to your VB Forms
By: Barron Anderson, Micron Electronics, Inc.
Ever wonder how the SETUP.EXE screen gets its cool shaded background coloring? This color
shading is called dithering, and you can easily incorporate it into your forms. Add the
following routine to a form:
Sub Dither(vForm As Form)
Dim intLoop As Integer
vForm.DrawStyle = vbInsideSolid
vForm.DrawMode = vbCopyPen
vForm.ScaleMode = vbPixels
vForm.DrawWidth = 2
vForm.ScaleHeight = 256
For intLoop = 0 To 255
vForm.Line (0, intLoop)-(Screen.Width, intLoop - 1), RGB(0, 0, 255 -intLoop), B
Next intLoop
End Sub
Now, add to the Form_Activate event the line
Dither ME
This version creates a fading blue background by adjusting the blue value in the RGB
function. (RGB stands for Red-Green-Blue.) You can create a fading red background by
changing the RGB call to
RGB(255 - intLoop, 0, 0).

May 25, 1998
Confirm Screen Resolution
Submitted by Nicholas L. Otley, nicholaso@kalamzoo.co.uk; www.kalamazoo.co.uk
Here's a great way to stop the user from running your application in the wrong screen
resolution. First, create a function called CheckRez:
Public Function CheckRez(pixelWidth As Long, pixelHeight As Long) As Boolean
'
Dim lngTwipsX As Long
Dim lngTwipsY As Long
'
' convert pixels to twips
lngTwipsX = pixelWidth * 15
lngTwipsY = pixelHeight * 15
'
' check against current settings
If lngTwipsX <> Screen.Width Then
CheckRez = False
Else
If lngTwipsY <> Screen.Height Then
CheckRez = False
Else

CheckRez = True
End If
End If
'
End Function
Next, run the following code at the start of the program:
If CheckRez(640, 480) = False Then
MsgBox "Incorrect screen size!"
Else
MsgBox "Screen Resolution Matches!"
End If

June 22, 1998
Measuring a text extent
submitted by Nenad Cus Babic
Nenad@computer.org
It's very simple to determine the extent of a string in VB. You can do so with WinAPI
functions, but there's an easier way: Use the AutoSize property of a Label component. First,
insert a label on a form (labMeasure) and set its AutoSize property to True and Visible
property to False. Then write this simple routine:
Private Function TextExtent(txt as String) as Integer
labMeasure.Caption = txt
TextExtent = labMeasure.Width
End Function When you want to find out the extent of some text, simply call this function
with the string as a parameter.
In my case it turned out that the measure was too short. I just added some blanks to the
string. For example:
Private Function TextExtent(txt As String) As Integer
labMeasure.Caption = " " & txt
TextExtent = labMeasure.Width
End Function

August 24, 1998
Help with Shell
submitted by Brad Gile
bgile@amfam.com
Suppose you have a DOS program, Dosapp.exe. This program produces an output file that will
subsequently be processed, and you want to do this N times. The code might look like this:
 for Trial = 1 to N
 x=shell("Dosapp.exe",vbHide)
 Process the output
 Next Trial
The problem is, the code after the Shell may be executed before the Shelled Dosapp.exe has created
the file. There are complicated ways of solving this, including API calls, but here's a simple
solution: the FileLen function. If the file to be processed is x$, you can just insert a few lines of
code:
 for Trial = 1 to N
 Open x$ for output as 1
 Close 1
 ' This sets file length equal to zero
 x=shell("Dosapp.exe",vbHide)
 Do While FileLen(x$) = 0
 DoEvents
 ' Halt further execution until x$ is created and closed
 Loop

 ' Process the output to add to a new file
 Next Trial

You may want to do other things such as using Timer to prevent an infinite Do Loop, but this is the
main idea. FileLen() works because even if x$ is open and has data in it, FileLen(x$) = 0. Thus
you're assured that the process code won't execute until x$ is fully created.

GETting the contents of a file
submitted by Pritesh
TransCapacity LP; spritesh@hotmail.com
To read a complete file in VB, the normal procedure is to read the contents of the file line by line
and accumulate it into a string. Instead, you can use the GET function to read the file with a single
call. Doing so simplifies and speeds up the process of reading a file.
You can use the following function:
 Dim Handle As Integer
 Dim FileString As String
 Handle = FreeFile
 Open "C:\TEMP\TST.TXT" For Binary As #Handle
 FileString = Space(FileLen("C:\TEMP\TST.TXT"))
 Get #Handle, ,FileString
 Close #Handle
This code involves a single call to return the contents of the file.

Modernize Your Toolbar Look Using only a few Windows API calls,
you can change the standard VB5 toolbar into an Office 97 look-alike. I've implemented two
display styles for the toolbar. The first allows you to change the toolbar to an Office 97-style
toolbar (similar to the one used by VB5), and the second allows you to change the toolbar to
the Internet Explorer 4.0-style toolbar. If you want to use the second style, you must supply
each button with some text in order to achieve the effect. In both cases, the button edges
are flat and only appear raised when the mouse passes over the button. To implement it, add
this code to a BAS module:
Private Declare Function SendMessage Lib "user32" Alias _

"SendMessageA" (ByVal hwnd As Long, ByVal wMsg As Long, _
ByVal wParam As Integer, ByVal lParam As Any) As Long

Private Declare Function FindWindowEx Lib "user32" Alias _
"FindWindowExA" (ByVal hWnd1 As Long, ByVal hWnd2 _
As Long, ByVal lpsz1 As String, ByVal lpsz2 As _
String) As Long

Private Const WM_USER = &H400
Private Const TB_SETSTYLE = WM_USER + 56
Private Const TB_GETSTYLE = WM_USER + 57
Private Const TBSTYLE_FLAT = &H800
Private Const TBSTYLE_LIST = &H1000

Public Sub Office97Toolbar(tlb As Toolbar, _
tlbToolbarStyle As Long)
Dim lngStyle As Long
Dim lngResult As Long
Dim lngHWND As Long

' Find child window and get style bits
lngHWND = FindWindowEx(tlb.hwnd, 0&, _

"ToolbarWindow32", vbNullString)
lngStyle = SendMessage(lngHWND, _

TB_GETSTYLE, 0&, 0&)

' Use a case statement to get the effect
Select Case tlbToolbarStyle
Case 1:

' Creates an Office 97 like toolbar

lngStyle = lngStyle Or TBSTYLE_FLAT
Case 2:

' Creates an Explorer 4.0 like toolbar,
' with text to the right
' of the picture. You must provide text
' in order to get the effect.
lngStyle = lngStyle Or TBSTYLE_FLAT _

Or TBSTYLE_LIST
Case Else

lngStyle = lngStyle Or TBSTYLE_FLAT
End Select

' Use the API call to change the toolbar
lngResult = SendMessage(lngHWND, _

TB_SETSTYLE, 0, lngStyle)

' Show the effects
tlb.Refresh

End Sub
Call this routine while a form with a toolbar is loading:
Private Sub Form_Load()

Call Office97Toolbar(Me.Toolbar1, 2)
' whatever...

End Sub
Michiel Leij
The Netherlands,

Loop on Non-Numeric Indices You might occasionally need to
execute a group of statements with different and unrelated values of a variable. For example,
say you need to verify that a number isn't a multiple of 2, 3, 5, 7, or 11. In these
circumstances, you can't use a regular For...Next loop, unless you store these values into a
temporary array. Here's a more concise solution:
Dim n As Variant
For Each n In Array(2, 3, 5, 7, 11)

If (TestNumber Mod n) = 0 Then
Print "Not prime"
Exit For

End If
Next
You can use the same technique to iterate on non-numeric values:
' check if a string embeds a shortened weekday name
Dim d As Variant
For Each d In Array("Sun", "Mon", "Tue", "Wed", "Thu", _

"Fri", "Sat")
If Instr(1, TestString, d, vbTextCompare) Then

Print "Weekday = " & d
Exit For

End If
Next
Francesco Balena
Bari, Italy

Keypress Won't Fire When Pasting Into Text
Box
Don't put rules for validating text values or formats in the KeyPress event-use the Change
event instead. If you "paste" into a text box, the KeyPress event isn't fired and all your

validation goes out the window. Also, if you don't carefully put code in the Change event that
sets the value of a text box, you'll create an infinite loop:
Private Sub Text1_Change()

'Append asterisk to text
Text1.Text = Text1.Text & "*"

End Sub
Here's a better way:
Private Sub Text2_Change()

Dim lCurr As Long
'Append asterisk to text
lCurr = Text2.SelStart
If Right$(Text2.Text, 1) <> "*" Then

Text2.Text = Text2.Text & "*"
'Be kind and don't put the cursor at the front of the
'text
Text2.SelStart = lCurr

End If
End Sub
Joe Karbowski
Traverse City, Michigan

In Search of Sample Code I'm always looking for sample code, and
the setup1.vbp file is an excellent source of reusable code. It comes with VB and is part of
the VB setup kit. The contents vary, depending on what version of VB you have, but you'll
find useful examples in each version. For example, the VB5 file sample code does these
things:

· Gets the Windows directory.
· Gets the Windows System directory.
· Determines if a file or directory exists.
· Determines if you're running WinNT or Win95.
· Determines drive type.
· Checks disk space.
· Creates a new path.
· Reads from an INI file.
· Parses date and time.
· Retrieves the short path name of a file containing long file names.

Plus, a whole module works to log errors to an error file. This code is well-commented and
can easily be cut and pasted into your project. Carole McCluskey
Seattle, Washington

Improve on the Bubble Sort A bubble sort's execution time is a
multiple of the square of the number of elements. Because of this, the bubble sort is said to
be an n-squared algorithm. You can easily make improvements to a bubble sort to speed it
up.
One way is to reverse the direction of passes reading the array, instead of always reading the
array in the same direction. This makes out-of-place elements travel quickly to their correct
position. This version of a bubble sort is called the shaker sort, because it imparts a shaking
motion to the array:
Public Sub Shaker(Item() As Variant)

Dim Exchange As Boolean
Dim Temp As Variant
Dim x As Integer

Do
Exchange = False
For x = (UBound(Item)) To (LBound(Item) + 1) Step -1

If Item(x - 1) > Item(x) Then

Temp = Item(x - 1)
Item(x - 1) = Item(x)
Item(x) = Temp
Exchange = True

End If
Next x

For x = (LBound(Item) + 1) To (UBound(Item))
If Item(x - 1) > Item(x) Then

Temp = Item(x - 1)
Item(x - 1) = Item(x)
Item(x) = Temp
Exchange = True

End If
Next x

Loop While Exchange
End Sub
Although the shaker sort improves the bubble sort, it still executes as an n-squared
algorithm. However, because most programmers can code a bubble sort with their eyes
closed, this is a nice way to shave 25 to 33 percent off the required execution time without
having to dig out the algorithm books. Still, you don't want to use either a bubble or shaker
sort for extremely large data sets. Tan Shing Ho
Kuala Lumpur, West Malaysia

Implement a Binary Tree
A binary search tree can be useful when you have to traverse a lot of data in sorted order. As
this CBinarySearchTree class demonstrates, you can implement binary search trees easily
using objects and recursion (both data recursion and procedural recursion):
'class properties:
Private LeftBranch As CBinarySearchTree
Private RightBranch As CBinarySearchTree
Private NodeData As String
'Adds a new value to the binary tree
Public Sub AddNode(NewData As String)

If Len(NodeData) = 0 Then
'Store data in current node if empty
NodeData = NewData

ElseIf NewData < NodeData Then
'Store data in left branch if NewData < NodeData
If LeftBranch Is Nothing Then

Set LeftBranch = New CBinarySearchTree
End If
LeftBranch.AddNode NewData

Else
'Store data in right branch if NewData
'>= NodeData
If RightBranch Is Nothing Then

Set RightBranch = New CBinarySearchTree
End If
RightBranch.AddNode NewData

End If
End Sub

'Displays all values in this tree
'If called on a child node, displays all
'values in this branch
Public Sub TraverseTree()

'Traverse left branch
If Not LeftBranch Is Nothing Then

LeftBranch.TraverseTree

End If
'Display this node
MsgBox NodeData
'Traverse right branch
If Not RightBranch Is Nothing Then

RightBranch.TraverseTree
End If

End Sub
Test this class by creating a new CBinarySearchTree object, calling AddNode a few times to
store data, and then calling TraverseTree to see the results. Binary search trees don't get
much simpler than this.
David Doknjas
Surrey, British Columbia, Canada

Hunt for Developers Want to see a list of the developers who worked on
VB5 and VB6? Try this: From VB's View menu, select Toolbars, then Customize.... In the
resulting dialog, click on the Commands tab. In the Categories list, select Help. Select "About
Microsoft Visual Basic" in the Commands list, and drag it to any menu or toolbar. Right-click
on the item you just dragged and rename it to "Show VB Credits" (without the quotes). Then
close the "Customize" dialog and click on the "Show VB Credits" item. Phil Weber
Tigard, Oregon

Grab System Fonts Easily At times, you might want to retrieve the
current system font settings, such as the font being used for window title bars, or the menu
or message box font. You could delve into the Registry, but why go to the trouble if the
SystemParametersInfo API does it for you? Here's how:
Private Declare Function SystemParametersInfo Lib "user32" _

Alias "SystemParametersInfoA" (ByVal uAction As Long, _
ByVal uParam As Long, lpvParam As Any, ByVal fuWinIni _
As Long) As Long

Private Type LOGFONT
lfHeight As Long
lfWidth As Long
lfEscapement As Long
lfOrientation As Long
lfWeight As Long
lfItalic As Byte
lfUnderline As Byte
lfStrikeOut As Byte
lfCharSet As Byte
lfOutPrecision As Byte
lfClipPrecision As Byte
lfQuality As Byte
lfPitchAndFamily As Byte
lfFaceName As String * 32

End Type

Private Type NONCLIENTMETRICS
cbSize As Long
iBorderWidth As Long
iScrollWidth As Long
iScrollHeight As Long
iCaptionWidth As Long
iCaptionHeight As Long
lfCaptionFont As LOGFONT
iSMCaptionWidth As Long
iSMCaptionHeight As Long

lfSMCaptionFont As LOGFONT
iMenuWidth As Long
iMenuHeight As Long
lfMenuFont As LOGFONT
lfStatusFont As LOGFONT

lfMessageFont As LOGFONT
End Type

Private Const SPI_GETNONCLIENTMETRICS = 41

Public Function GetCaptionFont() As String
Dim NCM As NONCLIENTMETRICS
NCM.cbSize = Len(NCM)
Call SystemParametersInfo(SPI_GETNONCLIENTMETRICS, _

0, NCM, 0)
If InStr(NCM.lfCaptionFont.lfFaceName, Chr$(0)) _

> 0 Then
GetCaptionFont = _

Left$(NCM.lfCaptionFont.lfFaceName, _
InStr(NCM.lfCaptionFont.lfFaceName, Chr$(0)) _
- 1)

Else
GetCaptionFont = NCM.lfCaptionFont.lfFaceName

End If
End Function

Keep in mind this function-GetCaptionFont-returns only the name of the font. However, all
the other font information is there in the LOGFONT structures as well. Ben Baird
Twin Falls, Idaho

Generate Random Strings
This code helps test SQL functions or other string-manipulation routines so you can generate
random strings. You can generate random-length strings with random characters and set
ASCII bounds, both upper and lower:

Public Function RandomString(iLowerBoundAscii As _
Integer, iUpperBoundAscii As Integer, _
lLowerBoundLength As Long, _
lUpperBoundLength As Long) As String

Dim sHoldString As String
Dim lLength As Long
Dim lCount As Long

'Verify boundaries
If iLowerBoundAscii < 0 Then iLowerBoundAscii = 0
If iLowerBoundAscii > 255 Then iLowerBoundAscii = 255
If iUpperBoundAscii < 0 Then iUpperBoundAscii = 0
If iUpperBoundAscii > 255 Then iUpperBoundAscii = 255
If lLowerBoundLength < 0 Then lLowerBoundLength = 0

'Set a random length
lLength = Int((CDbl(lUpperBoundLength) - _

CDbl(lLowerBoundLength) + _
1) * Rnd + lLowerBoundLength)

'Create the random string
For lCount = 1 To lLength

sHoldString = sHoldString & _
Chr(Int((iUpperBoundAscii - iLowerBoundAscii _
+ 1) * Rnd + iLowerBoundAscii))

Next
RandomString = sHoldString

End Function
Eric Lynn
Ballwin, Missouri

Friendly Enumerated Values If you build an ActiveX control that
exposes an enumerated property, you should define a Public Enum structure that gathers all
the possible values for that property. Doing this helps the developer that uses your control
because the enumerated values will be listed in a combo box in the Property window.
However, at first glance, it seems impossible to achieve the same behavior as most of VB's
intrinsic controls, which expose enumerated properties with short descriptions and embedded
spaces. Even if they're not documented in the language manuals, you can create enumerated
items that embed spaces by simply enclosing their names within square brackets: Public
Enum DrawModeConstants Blackness = 1 [Not Merge Pen] [Mask Not Pen] [Not Copy Pen] ...
End Enum Then add a DrawModeConstants property to the ActiveX control. All the
enumerated values appear in the Property window of the VB IDE, without the square brackets
and with all the spaces you included. Use this technique to embed other otherwise forbidden
characters, such as math or punctuation symbols. Francesco Balena
Bari, Italy

Evaluate Polynomials Faster The well-known Horner schema lets
you calculate polynomial expressions efficiently. To calculate:
A*x^N + B*x^(N-1) + . + Y*x + Z (^ means power),
simply write this expression as
(.((A*x + B)*x + C)*x + . +Y)*x + Z
Alex Bootman
Foster City, California

Enum API Constants Save Time Coding You can simplify
Win32 APIs by using enumerated types instead of constants. When you use enumerated
types, VB provides you with a list of values when you define the API in your application:
Option Explicit

' define scrollbar constants as enumerations
Enum sb

SB_BOTH = 3
SB_CTL = 2
SB_HORZ = 0
SB_VERT = 1

End Enum

Enum esb
ESB_DISABLE_BOTH = &H3
ESB_DISABLE_DOWN = &H2
ESB_DISABLE_LEFT = &H1
ESB_ENABLE_BOTH = &H0
ESB_DISABLE_RIGHT = &H2
ESB_DISABLE_UP = &H1

End Enum
Note that you need to change the Declares to match the new Enums:
Private Declare Function EnableScrollBar Lib _

"user32" (ByVal hWnd As Long, ByVal _
wSBflags As sb, ByVal wArrows As esb) As _
LongPrivate Declare Function _
ShowScrollBar Lib "user32" (ByVal hWnd _
As Long, ByVal wBar As sb, ByVal bShow _
As Boolean) As Long

When coding up these API calls, VB displays enumerated lists for both the wSBflags and
wArrows parameters to EnableScrollBar, and displays both the wBar and bShow parameters
to ShowScrollBar:
Call EnableScrollBar(Me.hWnd, SB_BOTH, _

ESB_ENABLE_BOTH)
Call ShowScrollBar(Me.hWnd, SB_BOTH, True)
Tom Domijan
Aurora, Illinois

Duplicate Lines of Code Without Syntax Errors
Many times when I code similar syntax with slight modifications on each line, I like to make a
template of the core syntax, quickly paste a copy of it however many times I need it, and
then go back and edit each line. Many times, however, the core syntax generates an error by
the VB editor. You can get around this problem by commenting the core syntax line out
before you paste the template. Once you finish editing the templates, simply go back and
remove the comment delimiter. This is especially easy under VB5, which has a Block
Uncomment command. For example, say you're reading a recordset to populate a collection:
While Not mRS.EOF
 oObject.FName = mRS!FName
 oObject.LName = mRS!LName
 oObject.Phone = mRS!Phone
 .
 .
 cCollection.Add oObject, oObject.FName
Wend
If your object has 20 or 30 properties, it would be quicker to code this core syntax:
' oObject. = mRS!
Copy it, paste it 20 or 30 times, go back and type the property and field names in, and
remove the comment delimiter. The comment delimiter lets you go back and edit each line in
whatever order you like and not have to worry about generating a syntax error. Trey Moore
San Antonio, Texas

Draw Frames on Form Without Control The DrawEdge
API provides a convenient way to draw a number of interesting effects. You can change the
EDGE_ constants to give different border effects; the BF_ constants determine which borders
are drawn (for example, BF_BOTTOM):
Private Declare Function DrawEdge Lib "user32" (ByVal hDC _

As Long, qrc As RECT, ByVal edge As Long, ByVal _
grfFlags As Long) As Long

Private Declare Function GetClientRect Lib "user32" _
(ByVal hWnd As Long, lpRect As RECT) As Long

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

Const BDR_INNER = &HC
Const BDR_OUTER = &H3
Const BDR_RAISED = &H5
Const BDR_RAISEDINNER = &H4
Const BDR_RAISEDOUTER = &H1
Const BDR_SUNKEN = &HA
Const BDR_SUNKENINNER = &H8
Const BDR_SUNKENOUTER = &H2

Const BF_RIGHT = &H4
Const BF_LEFT = &H1
Const BF_TOP = &H2
Const BF_BOTTOM = &H8

Const EDGE_BUMP = (BDR_RAISEDOUTER Or BDR_SUNKENINNER)
Const EDGE_ETCHED = (BDR_SUNKENOUTER Or BDR_RAISEDINNER)
Const EDGE_RAISED = (BDR_RAISEDOUTER Or BDR_RAISEDINNER)
Const EDGE_SUNKEN = (BDR_SUNKENOUTER Or BDR_SUNKENINNER)
Const BF_RECT = (BF_LEFT Or BF_RIGHT Or BF_TOP Or BF_BOTTOM)
In the Form_Paint event, put this code where you wish to draw the rectangle:
Private Sub Form_Paint()

Static Tmp As RECT
Static TmpL As Long
TmpL = GetClientRect(hWnd, Tmp)
TmpL = DrawEdge(hDC, Tmp, EDGE_SUNKEN, BF_RECT)

End Sub
If the rectangle doesn't draw, do a Debug.Print on the TmpL variable. It should read a
nonzero value upon success. Jeff Shimano
Mississauga, Ontario, Canada

Don't Auto-Optimize for Fast Code If you take a look at VB's
native code optimization options for the first time, you might be tempted to click on
"Optimize for Fast Code" right away. Strange as it may sound, though, this does not always
guarantee the best performance. Applications optimized for performance generally don't run
that much faster, but do have a larger memory footprint. This causes them to load slower,
especially on memory-constrained machines, giving the user the impression that your app is
actually slower than one optimized for compact code. For the same reason, consider leaving
your applications compiled as p-code anyway. Especially for large, UI- and database-intensive
applications, the performance gain of compiling to native code won't outweigh the increase in
application size. To determine exactly which compilation option is right for you, use the VB
Application Performance Explorer (APE) included on your VB CD. Michiel de Bruijn
Rotterdam, The Netherlands

Do You Know About Date Literals? Using a Date literal is
about 12 times faster-according to NuMega TrueTime-than using the CDate function and
converting a string literal. Here's an example:
Dim TestDate as Date

'The following 2 lines produce the same results
TestDate = #7/1/98#
TestDate = CDate("7/1/98")

Just as you enclose a string literal with quotes ("Hello"), you can enclose Date literals with
pound signs (#07/07/1998#). So, these are all valid Date literals: #July 7, 1998#, #7-JUL-
98#, and #07/07/1998# James Bragg
received by e-mail,

Customize VB Toolbars Here are a few simple ways you can customize
your VB5 IDE: Add tabs to the custom control toolbox by right-clicking on the General button
and selecting the Add Tab command. You can also move tabs around and delete them, as
well as move control icons from one tab to the other using the drag-and-drop method.
Create toolbar buttons for any menu command by right-clicking on any toolbar and selecting
the Customize command. Move to the Commands tab, select the menu command in the right-
most list box, and drag it onto the toolbar where you want to move it. Good candidates for
this procedure are the Project-References, Project-Properties, and Tools-Add Procedure
commands.

Create a brand new toolbar in the Toolbars tab of the Customize dialog box. After you define
a toolbar, add buttons using the procedure outlined above. When the Customize dialog box is
active, right-click on any toolbar button to change its image, create a group divider,
show/hide text, and more. Francesco Balena
Bari, Italy

Create an Array on the Fly with the Array
Function The GetRows method retrieves multiple rows of a Recordset (JET) or
rdoResultset (RDO) into an array. I often use this feature to transfer data between an OLE
Server and client applications. This method uses a Variant type variable as a parameter to
store the returned data. It is internally a two-dimensional array and it is treated like one on
the client side, but in declaration of the custom method on the OLE server, it looks so much
tidier as variant. I've tried to pass some additional information such as field names, types,
and so on. Usual means of transportation such as collections and regular arrays are either too
slow or destroy the symmetry and good look in the declaration. Fortunately, the Array
function returns a Variant containing an array:
Dim A As Variant
A = Array(10,2)
Dejan Sunderic
Etobicoke, Ontario, Canada

Add Remarks to Your Procedures You can make your code
more readable by always adding a remark on top of all your procedures. Create an add-in
that makes it fast and easy. First, run New Project under the File menu and select Addin from
the project gallery that appears. In the Project Properties dialog, change the project name to
RemBuilder. In the AddToIni procedure (contained in the AddIn.bas module), change the
MyAddin.Connect string to RemBuilder.Connect.
Press F2 to show the Object Browser, select the RemBuilder project in the upper combo box,
then right-click on the Connect class in the left-most pane and select the Properties menu
command. In the dialog that appears, change the description into Automatic Remark Builder
(or whatever you want).
In the IDTExtensibility_OnConnection procedure (in the Connect.cls module), search for the
My Addin string and modify it to &Remark Builder. This is the caption of the menu item that
will appear in the Add-Ins menu. In the Immediate window, type AddToIni and press Enter to
register the add-in in the VBADDIN.ini file. In the MenuHandler_Click procedure in
Connect.cls, delete the only executable line (Me.Show) and insert this code instead:
SendKeys "'" & String$(60, "-") & vbCrLf _

& "' Name:" & vbCrLf _
& "' Purpose:" & vbCrLf _
& "' Parameters:" & vbCrLf _
& "' Date: " & Format$(Now, "mmmm,dd yy") _
& "' Time: " & Format$(Now, "hh:mm") & vbCrLf _
& "'" & String$(60, "-") & vbCrLf

Compile this program into an EXE or a DLL ActiveX component, then install the add-in as
usual from the Add-In Manager. Before you create a procedure, select the Remark Builder
menu item from the Add-Ins menu to insert a remark template in your code window, and
you'll never again have to struggle against an under-documented program listing. Francesco
Balena
Bari, Italy

Reduce the Clutter in Your VB IDE Here's another simple but
useful add-in you can add to your arsenal. Follow the directions given in the previous tip "Add
Remarks to Your Procedures," with only minor differences. Use the project name
CloseWindows rather than RemBuilder. Also, change the description to "Close All IDE

Windows." Finally, type a suitable caption for the menu command, such as Close IDE
&Windows. Insert this code in the MenuHandler_Click procedure:
Dim win As VBIDE.Window
For Each win In VBInstance.Windows
If win Is VBInstance.ActiveWindow Then
' it's the active window, do nothing
ElseIf win.Type = vbext_wt_CodeWindow Or _

win.Type = vbext_wt_Designer Then
' code pane or designer window
win.Close
End If
Next
When you select the add-in from the Add-Ins menu, it closes all the forms and code windows
currently open, except the one you're working with. Francesco Balena
Bari, Italy

Read and Write Arrays Quickly You can read and write arrays
quickly from files using Put and Get. This approach is faster than reading and writing the
array one entry at a time:
Dim arr(1 To 100000) As Long
Dim fnum As Integer

fnum = FreeFile
Open "C:\Temp\xxx.dat" For Binary As fnum
Put #fnum, , arr
Close fnum

Rod Stephens
Boulder, Colorado

Reduce Filtering Frustration This code works wonders to reduce
flicker and lessen your frustration. Place a timer on the form (tmr_Timer) and set the Interval
to 1000. Set Enabled to False, then place this code in the txt_Filter_Change event:
Private Sub txtFilter_Change()

Timer1.Enabled = False
Timer1.Enabled = True

End Sub
In the Timer event, call this routine that refreshes your recordset:
Private Sub Timer1_Timer()

Timer1.Enabled = False
Call MyUpdateRecordsetRoutine

End Sub
The recordset will only be updated if you haven't pressed a key for a full second. Each time
you press a key, the timer is reset and the one-second countdown starts all over again. Tom
Welch
received by e-mail,

ReDim the Right Array! Many VB programmers use the Option Explicit
statement to make sure each variable has been explicitly declared before using it. This means
you'll always notice a misspelled variable, which if not caught might cause your application to
behave erratically. However, when you use the ReDim statement (documented, albeit
ambiguously), Option Explicit can't save you. Consider this procedure:
Sub DisplayDaysInThisYear

Dim iDaysInYear(365)
' Initially dimension array

If ThisIsLeapYear() Then
' Is this year a leap year?

ReDim iDaysInYr(366)
' Extra day this year!

End If

MsgBox "This year has " & _
UBound(iDaysInYear) & " days in it!"

End Sub
This ReDim statement creates a new variable called iDaysInYr, even though you really
wanted to reallocate the storage space of the iDaysInYear() array. So the message box
displays the incorrect number of days in the year. You can't prevent this from happening,
other than being careful when coding the ReDim statement. However, if you use ReDim
Preserve, Option Explicit makes sure the variable was previously declared. Frank Masters
Grove City, Ohio

Replacement for Now() and Timer() The simple
BetterNow() function, shown here, replaces the built-in Now() function. It's faster (10
microseconds vs. 180 microseconds on a Pentium 166MMX) and more accurate, potentially
supplying one-millisecond resolution, instead of 1000 milliseconds.
Because it's also faster and more accurate than Timer(), which clocks at 100 microseconds
and provides 55 milliseconds resolution, it should also replace Timer, especially when Timer()
is used to measure elapsed times. Besides, Timer() rolls over at midnight, and BetterNow()
doesn't:
#If Win16 Then

Private Declare Function timeGetTime Lib _
"MMSYSTEM.DLL" () As Long

#Else
Private Declare Function timeGetTime Lib "winmm.dll" _

() As Long
#End If

Function BetterNow() As Date
Static offset As Date
Static uptimeMsOld As Long
Dim uptimeMsNew As Long
Const oneSecond = 1 / (24# * 60 * 60)
Const oneMs = 1 / (24# * 60 * 60 * 1000)
uptimeMsNew = timeGetTime()
' check to see if it is first time function called or
' if timeGetTime rolled over (happens every 47 days)
If offset = 0 Or uptimeMsNew < uptimeMsOld Then

offset = Date - uptimeMsNew * oneMs + CDbl(Timer) * _
oneSecond

uptimeMsOld = uptimeMsNew
End If
BetterNow = uptimeMsNew * oneMs + offset

End Function
Andy Rosa
received by e-mail,

Resize the Drop-Down List Area of Combo
Boxes VB doesn't provide a ListRows property, so if you need to display more than eight
default items in a combo box drop-down list, use this procedure to increase the size of the
combo box window:
Option Explicit

Type POINTAPI
 x As Long

 y As Long
End Type

Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type

Declare Function MoveWindow Lib _
 "user32" (ByVal hwnd As Long, _
 ByVal x As Long, ByVal y As Long, _
 ByVal nWidth As Long, _
 ByVal nHeight As Long, _
 ByVal bRepaint As Long) As Long
Declare Function GetWindowRect Lib _
 "user32" (ByVal hwnd As Long, _
 lpRect As RECT) As Long
Declare Function ScreenToClient Lib _
 "user32" (ByVal hwnd As Long, _
 lpPoint As POINTAPI) As Long

Public Sub Size_Combo(rForm As Form, _
 rCbo As ComboBox)
 Dim pt As POINTAPI
 Dim rec As RECT
 Dim iItemWidth As Integer
 Dim iItemHeight As Integer
 Dim iOldScaleMode As Integer

 'Change the Scale Mode on the form
 'to Pixels
 iOldScaleMode = rForm.ScaleMode
 rForm.ScaleMode = 3
 iItemWidth = rCbo.Width

 'Set the new height of the combo box
 iItemHeight = rForm.ScaleHeight - _
 rCbo.Top - 5
 rForm.ScaleMode = iOldScaleMode

 'Get the coordinates relative to the
 'screen
 Call GetWindowRect(rCbo.hwnd, rec)
 pt.x = rec.Left
 pt.y = rec.Top

 'then the coordinates relative to
 'the form.
 Call ScreenToClient(rForm.hwnd, pt)

 'Resize the combo box
 Call MoveWindow(rCbo.hwnd, pt.x, _
 pt.y, iItemWidth, iItemHeight, 1)
End Sub
Keith Meulemans
Green Bay, Wisconsin

Right-Justify or Left-Justify Text Use the Format$ function to
produce right- or left-justified text:

Format$(123, "@@@@@@") gives " 123"
Format$(123, "!@@@@@@") gives "123 "
Rod Stephens
Boulder, Colorado

Retrieving a Control From the Controls
Collection With an hWnd The GetDlgCtrlID API, when passed a valid
hWnd, returns a value that directly corresponds to the Index property of the Controls
collection:
Private Declare Function GetDlgCtrlID Lib "user32" _

(ByVal hWnd As Long) As Long

Private Sub Form_Load()
Dim i As Long

On Error Resume Next
For i = 0 To Controls.Count - 1

Debug.Print Controls(i).Name,
Debug.Print Controls(GetDlgCtrlID(Controls(i).hWnd) _

- 1).Name
Next i

End Sub
This loop, located in the Form_Load event of a form with a number of controls on it, loops
through all the controls and prints the name of each windowed control twice, demonstrating
that it has correctly located the control without looping through the control collection.
Jeremy Adams
Tiverton, Devon, United Kingdom

Roll-Your-Own Decimal Entry Filter
Here's an easy method for making sure your users enter only numeric data, and only one
decimal point. First, place two Public procedures in a standard module. You can use Private
procedures in a form if you're only using it there, but you'll lose easy portability for future
projects.
The first procedure makes sure the decimal point is only entered once. The second procedure
filters out all non-numeric characters except the decimal point:
Public Sub DecCheck(Target As String, ByRef KeyStroke As _

Integer)
If InStr(Target, ".") And KeyStroke = 46 Then

KeyStroke = 0
End If

End Sub

Public Sub NumCheck(ByRef KeyStroke As Integer)
If (KeyStroke < 48 Or KeyStroke > 57) And (KeyStroke _

<> 46 And KeyStroke <> 8) Then
KeyStroke = 0

End If
End Sub
Then invoke the code from your TextBox's KeyPress event:
Private Sub txtUnitPrice_KeyPress(KeyAscii As Integer)

DecCheck txtUnitPrice, KeyAscii
NumCheck KeyAscii

End Sub
One caveat: This code doesn't prevent text characters from being pasted in via the clipboard.
Ron Schwarz
Mt. Pleasant, Michigan

Rotate an Object About a Point You can rotate any object about
a center using polar coordinates. Simply define your center Xo and Yo, which in this case is
the center of a form. The amount of rotation is determined by direction, one degree:
Private Direction As Long
Private Xo As Long, Yo As Long

Private Sub Form_Click()
If Direction = 1 Then

Direction = 359 'counterclockwise
Else

Direction = 1 'clockwise
End If

End Sub

Private Sub Form_Load()
Direction = 1 'clockwise

End Sub

Private Sub Form_Resize()
Xo = Me.ScaleWidth \ 2
Yo = Me.ScaleHeight \ 2

End Sub

Private Sub Timer1_Timer()
Dim i As Byte
Dim r As Single
Dim Pi As Single
Dim theta As Single
Dim plotx, ploty, dx, dy As Integer

Xo = Form1.Width / 2
'get center, image is to rotate about
Yo = Form1.Height / 2
Pi = 4 * Atn(1)
dx = Image1.Left - Xo
'get horizontal distance from center
dy = Image1.Top - Yo
' "" vertical ""
theta = Atn(dy / dx)
'get angle about center
r = dx / Cos(theta)
'get distance from center
plotx = r * Cos(theta + Direction * Pi / 180) + Xo
'get new x rotate about center
ploty = r * Sin(theta + Direction * Pi / 180) + Yo
' "" y ""
Image1.Left = plotx
Image1.Top = ploty

End Sub
David A. Sorich
Countryside, Illinois

Shortcuts for the VB Environment 1) In VB5, pressing Ctrl-F3
when the cursor is over a word automatically searches to the next occurrence of that word,
bypassing the search dialog. You need to be past the first character of the word for it to work
properly. 2) VB4/5 Ctrl-Tab cycles through all your open windows in the IDE often quicker
than going to the Window menu. Tim Jones
Castlemaine, Victoria, Australia

Show 3-D Text Messages
If you want to print text on an object with 3-D effects, use this subroutine to convert fonts
into 3-D fonts with borders. In this routine, the user can define shadow length, shadow color,
font color, border color, and position of text on the object. Note that all color values are in the
range of 0-15 because they are used as arguments for the QBColor function:
Sub Fonts3d(Print_Object As Object, Text1 As _

String, postx As Single, Posty As _
Single, Shadow_Length As Integer, _
FontsColor As Integer, ShadowColor As _
Integer, BorderColor As Integer)
Dim I As Integer, Prev_Scale_Mode As Integer
Prev_Scale_Mode = Print_Object.ScaleMode
If postx = -1 Then 'for center align

postx = (Print_Object.ScaleWidth - _
Print_Object.TextWidth(Text1)) / 2

End If
Print_Object.ForeColor = QBColor(ShadowColor)
'Generate shadow
For I = 1 To Shadow_Length * 16 Step 8

Call PrintText(Print_Object, _
postx + I, Posty + I, Text1)

Next I
'Print border
Print_Object.ForeColor = QBColor(BorderColor)
Call PrintText(Print_Object, postx - 15, Posty, Text1)
Call PrintText(Print_Object, postx + 15, Posty, Text1)
Call PrintText(Print_Object, postx, Posty - 15, Text1)
Call PrintText(Print_Object, postx, Posty + 15, Text1)
Print_Object.ForeColor = QBColor(FontsColor)
Call PrintText(Print_Object, postx, Posty, Text1)

End Sub
Sub PrintText(Print_Object As Object, _

Xposition As Single, Yposition As _
Single, Text1 As String)
Print_Object.CurrentX = Xposition
Print_Object.CurrentY = Yposition
'Print text on object
Print_Object.Print Text1

End Sub
' example of usage:
Call Fonts3d(Picture1, "WELCOME TO T.T.T.I.", _
 50, 150, 5, 6, 11, 12)
Atmabodh Hande
Shamla Hills, Bhopal, India

Showing "&" Character in Labels If you want to show the
character "&" instead of having it work as a marker for the access key, set the property
"UseMnemonic" to False. This property is useful, for instance, when using Label controls to
show data from a database. You can also get literal "&" characters by using double
ampersands in the Caption property to display a single "&." S. Edwin Gnanaraj
Madras, India

Speed up your Code Using Choose You can often use Choose
to replace an array and build tables of results evaluated at compile-time instead of run time.
For instance, if you need to evaluate the factorial of a number in the range 1 to 10, try this
function:

Function Factorial(number As Integer) _
 As Long
Factorial = Choose(number, 1, 2, 6, _
 24, 120, 720, 5040, 40320, _
 362880, 3628800)
End Function
Francesco Balena
Bari, Italy

Taking a Form in Front of Another Form When building
a floating toolbar, you might need to keep it in front of the main form of your application.
This took time to do in VB3 and VB4, because you had to resort to API functions. In VB5, you
can take advantage of a new, optional argument of the Show method:
' within the main form
frmFloating.Show 0, Me
The second argument sets the owner form for the window being displayed. The "owned" form
will always be in front of its owner, even when it doesn't have the input focus. Moreover,
when the owner form is closed, all its owned forms are automatically closed also. Francesco
Balena
Bari, Italy

Test for "File Exist" the Right Way Dir$ raises a runtime
error if you supply it an invalid drive. For example, Dir$ ("d:\win\himems.sys") crashes if
drive d: doesn't exist. To check if a file exists, add an error handler:
Function FileExist(filename As String) _
 As Boolean
 On Error Resume Next
 FileExist = Dir$(filename) <> ""
 If Err.Number <> 0 Then FileExist _
 = False
 On Error GoTo 0
End Function
Pedro Prospero Luis
Odivelas, Portugal

Tie a Message Box to Debug.Assert for
Advanced Debugging Placing a message box in an error trap can provide
useful debugging information, but it doesn't allow you to return to the subroutine or function
to poke around and further debug the code. This version of a message box expedites design-
time debugging by breaking execution if the developer presses OK:
Private Function MyDebugMsg(ByVal aMessage _

As String) As Boolean
' This function is used for expediting
' development
If MsgBox(aMessage, vbOKCancel, _

"OK puts you into the Error Trap") = vbOK Then
MyDebugMsg = False

Else
MyDebugMsg = True

End If
End Function

' Sample sub
Public Sub SetColor()
On Error GoTo SetColorError

' body of the subroutine would go here,

' force an error to demonstrate
Error 5

SetColorErrorExit:
Exit Sub

SetColorError:
' In an error trap place this line in addition to any
' other error handling code
Debug.Assert MyDebugMsg(Err.Description & " in SetColor")

'other error handling code
Resume SetColorErrorExit

End Sub
Stan Mlynek
Burlington, Ontario, Canada

Translate Color Values With the RGB function, VB provides a neat and
valuable tool for converting separate Red, Green, and Blue values into a single Long color
value.. However, VB won't let you translate back from its this color value to back to its
constituent RGB values. But, you can pick the individual colors out of a hexadecimal
representation of the Long value produced by RGB. The colors fall in "BBGGRR" order. Put
this code in a module:
Type RGB_Type

R As Long
G As Long
B As Long

End Type

Function ToRGB(ByVal Color As Long) As RGB_Type
Dim ColorStr As String
ColorStr = Right$("000000" & Hex$(Color), 6)
With ToRGB
.R = Val("&h" & Right$(ColorStr, 2))
.G = Val("&h" & Mid$(ColorStr, 3, 2))
.B = Val("&h" & Left$(ColorStr, 2))
End With

End Function
To use this function, put a picture in a form's Picture property, and insert this code in that
form:
Private Sub Form_MouseUp(Button As Integer, Shift _

As Integer, X As Single, Y As Single)
Dim RGB_Point As RGB_Type
RGB_Point = ToRGB(Point(X, Y))
Caption = RGB_Point.R & " " & RGB_Point.G & " " & _

RGB_Point.B
End Sub
Click on different places on the picture. VB3 users must return the values differently, because
VB didn't support the return of a user-defined type until VB4. Brian Donovan
Bakersfield, California

Trapping a Double Click for a Toolbar Button VB4
supports the built-in Win95 Toolbar control, which allows users to add Buttons to the toolbar.
The button has a ButtonClick event, but if you want to trap a double-click, there is no
ButtonDoubleClick event. To work around this problem, declare two form level variables:
Private mbSingleClicked As Boolean
Private mbDoubleClicked As Boolean

 In the Toolbars ButtonClick event, add this code:

Private Sub Toolbar1_ButtonClick_
 (ByVal Button As Button)
Dim t As Single
t = Timer
If mbSingleClicked = True Then
 mbDoubleClicked = True
 MsgBox "Double Clicked"
Else
 mbSingleClicked = True
 ' allow the user to click the next
 ' time if he wants to double click
 Do While Timer - t < 1 And mbSingleClicked = True
 DoEvents
 Loop
 ' if the user has selected a double
 ' click end the sub.
 If mbDoubleClicked = True Then
 mbSingleClicked = False
 mbDoubleClicked = False
 Exit Sub
 End If
End If
If mbDoubleClicked = False Then
 MsgBox "Single Clicked"
End If

'you can do the processings here, e.g
'If mbDoubleClicked Then
'--------- code
'ElseIf mbSingleClicked Then
'--------- code
'End If

'when exiting from the sub please
'reintialize the variables, otherwise we
'will end up with the single clicks only
If mbDoubleClicked = False Then
 mbSingleClicked = False
 mbDoubleClicked = False
End If
End Sub
Sushrut Nawathe
Pune, India

Type-o-matic Text Box This code creates a smart input box. Every time
you type something into this text box, the first letters of your string are compared against
the members of a hidden list box. The code guesses how your string should be completed and
finishes it for you, similar to how the latest versions of Microsoft Excel and Internet Explorer
behave.
To use this technique, add a list box to your form and set its Visible property to False. This
example fills the list at Form_Load with some likely selections. In a real app, you'd add a new
element to the list after each user entry is completed. Add this code to the form containing
the text and list boxes:
Option Explicit

#If Win32 Then
Private Const LB_FINDSTRING = &H18F
Private Declare Function SendMessage Lib _

"User32" Alias "SendMessageA" (ByVal _
hWnd As Long, ByVal wMsg As Long, _
ByVal wParam As Long, lParam As Any) _
As Long

#Else
Private Const WM_USER = &H400
Private Const LB_FINDSTRING = (WM_USER + 16)
Private Declare Function SendMessage Lib _

"User" (ByVal hWnd As Integer, ByVal _
wMsg As Integer, ByVal wParam As _
Integer, lParam As Any) As Long

#End If

Private Sub Form_Load()
List1.AddItem "Orange"
List1.AddItem "Banana"
List1.AddItem "Apple"
List1.AddItem "Pear"

End Sub

Private Sub Text1_Change()
Dim pos As Long
List1.ListIndex = SendMessage(_

List1.hWnd, LB_FINDSTRING, -1, ByVal _
CStr(Text1.Text))

If List1.ListIndex = -1 Then
pos = Text1.SelStart

Else
pos = Text1.SelStart
Text1.Text = List1
Text1.SelStart = pos
Text1.SelLength = Len(Text1.Text) - pos

End If
End Sub

Private Sub Text1_KeyDown(KeyCode As _
Integer, Shift As Integer)
On Error Resume Next
If KeyCode = 8 Then 'Backspace

 If Text1.SelLength <> 0 Then
Text1.Text = Mid$(Text1, 1, _

Text1.SelStart - 1)
KeyCode = 0

End If
ElseIf KeyCode = 46 Then 'Del

If Text1.SelLength <> 0 And _
Text1.SelStart <> 0 Then
Text1.Text = ""
KeyCode = 0

End If
End If

End Sub
Paolo Marozzi
Ascoli Piceno, Italy

Use Backquotes Instead of Apostrophes Often when
using Transact-SQL, I want to capture comments from a user in a text box and send them to
the database. However, if the user types an apostrophe in the text box, a run-time error is
generated when the update is processed, because SQL Server thinks the apostrophe is being
used to mark the end of a string. To get around this problem, intercept the user's keystrokes

in the KeyPress event and exchange the apostrophe with an "upside-down" quote mark
(ASCII(145)) like this:
Private Sub Text1_Keypress_
 (KeyAscii as Integer)
 If KeyAscii = 39 Then
 KeyAscii = 145
 End If
End Sub
Alternatively, you might decide to substitute all occurrences of single quotes into backquotes
immediately before sending them to SQL Server. Mike McMillan
North Little Rock, Arkansas

Use MouseMove for Easy StatusBar Updates
You can easily make your program show descriptive text on a StatusBar control in response
to mouse movement. Assign the text to the appropriate panel in the MouseMove events of
the appropriate controls, then use the Form_MouseMove event to clear text from the panel:
Private Sub txtAddress_MouseMove(Button As Integer, Shift _

As Integer, X As Single, Y As Single)
StatusBar1.Panels(1).Text = "Enter Address here."

End Sub

Private Sub txtName_MouseMove(Button As Integer, Shift _
As Integer, X As Single, Y As Single)
StatusBar1.Panels(1).Text = "Enter Name here."

End Sub

Private Sub Form_MouseMove(Button As Integer, Shift _
As Integer, X As Single, Y As Single)
StatusBar1.Panels(1).Text = ""

End Sub
Ron Schwarz
Mt. Pleasant, Michigan

Use Name Parameters With Oracle Stored
Procedures
When executing an Oracle stored procedure, use the named parameter convention. In place
of this code:
OraDatabase.ExecuteSQL _

("Begin Employee.GetEmpName (:EMPNO, :ENAME); end;")

Use this code:

OraDatabase.ExecuteSQL ("Begin Employee.GetEmpName _
(empno=>:EMPNO, ename=>:ENAME); end;")

The second example still works even if you change the positions of the stored-procedure
arguments. Also, with this convention, you can write a generic routine to assemble the SQL
statement without worrying about positioning the stored-procedure arguments.
Arnel J. Domingo
Hong Kong, China

Using the Format Function With Strings You'll use the
Format function most often with numbers, but it can be useful when applied to strings as
well. For example, you can format a credit card number-which is held in a string variable,
even if it contains only digits-and subdivide the number into four groups of four characters
each, using a complex string expression:

' X holds the sequence of 16 digits
CreditCardNum = Left$(x, 4) & " " & Mid$(x, 5, 4) & " " & _

Mid$(x, 9, 4) & " " & Right$(x, 4)
The Format function lets you accomplish the same result in a more readable and efficient
way:
CreditCardNum = Format$(x, "!@@@@ @@@@ @@@@ @@@@")
Francesco Balena
Bari, Italy

Using Label Control as Splitter Here's a demo for using a Label
control as a splitter between two controls, as well as sample code for employing the splitter in
an Explorer-like application:
Option Explicit

Private mbResizing As Boolean
'flag to indicate whether mouse left
'button is pressed down

Private Sub Form_Load()
TreeView1.Move 0, 0, Me.ScaleWidth / 3, _

Me.ScaleHeight
ListView1.Move (Me.ScaleWidth / 3) + 50, 0, _

(Me.ScaleWidth * 2 / 3) - 50, _
Me.ScaleHeight

Label1.Move Me.ScaleWidth / 3, 0, 100, _
Me.ScaleHeight

Label1.MousePointer = vbSizeWE
End Sub

Private Sub Label1_MouseDown(Button As Integer, Shift As _
Integer, X As Single, Y As Single)
If Button = vbLeftButton Then mbResizing = _

True
End Sub

Private Sub Label1_MouseMove(Button As _
Integer, Shift As Integer, X As _
Single, Y As Single)
'resizing controls while the left mousebutton is
'pressed down
If mbResizing Then

Dim nX As Single
nX = Label1.Left + X
If nX < 500 Then Exit Sub
If nX > Me.ScaleWidth - 500 Then Exit Sub
TreeView1.Width = nX
ListView1.Left = nX + 50
ListView1.Width = Me.ScaleWidth - nX - _

50
Label1.Left = nX

End If
End Sub

Private Sub Label1_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)
mbResizing = False

End Sub
Rajesh R. Vakharia
Mumbai, India

Use TypeName Instead of TypeOf...Is To write reusable
routines that work with multiple types of controls, test the control type using the TypeName
function in place of the TypeOf...Is statement. For example, take a look at this routine-you
can reuse it in another project only if you also add the RichTextBox control to the
Components list:
' save the selected text to an open file
' works with TextBox and RichTextBox controls
Sub SaveSelectedText(ctrl As Control, filenum As Integer)

If TypeOf ctrl Is TextBox Then
Print #filenum, ctrl.SelText

ElseIf TypeOf ctrl Is RichTextBox Then
Print #filenum, RichTextBox1.SelRTF

End If
End Sub
To avoid this problem and gain additional benefits such as the ability to use a Select Case
block, use the TypeName function instead:
Sub SaveSelectedText(ctrl As Control, filenum As Integer)

Select Case TypeName(ctrl)
Case "TextBox"

Print #filenum, ctrl.SelText
Case "RichTextBox"

Print #filenum, RichTextBox1.SelRTF
End Select

End Sub
Francesco Balena
Bari, Italy

Use This Higher-Resolution Stopwatch Use this code to
create a class called HiResTimer:
'The number is codified as HighPart*2^32+LowPart
Private Type LARGE_INTEGER

LowPart As Long
HighPart As Long

End Type

Private Declare Function QueryPerformanceCounter Lib _
"kernel32" (lpPerformanceCount As LARGE_INTEGER) _
As Long

Private Declare Function QueryPerformanceFrequency Lib _
"kernel32" (lpFrequency As LARGE_INTEGER) As Long

Private m_TicksPerSecond As Double
Private m_LI0 As LARGE_INTEGER
Private m_LI1 As LARGE_INTEGER

Friend Sub Class_Initialize()
Dim LI As LARGE_INTEGER

If QueryPerformanceFrequency(LI) <> 0 Then
m_TicksPerSecond = LI2Double(LI)

Else
m_TicksPerSecond = -1

End If
End Sub

Friend Property Get Resolution() As Double
Resolution = 1# / m_TicksPerSecond

End Property

Friend Sub EnterBlock()

QueryPerformanceCounter m_LI0
End Sub

Friend Sub ExitBlock()
QueryPerformanceCounter m_LI1

End Sub

Friend Property Get ElapsedTime() As Double
Dim EnterTime As Double, ExitTime As Double

EnterTime = LI2Double(m_LI0) / m_TicksPerSecond
ExitTime = LI2Double(m_LI1) / m_TicksPerSecond
ElapsedTime = ExitTime - EnterTime

End Property

Friend Function LI2Double(LI As LARGE_INTEGER) As Double
Dim Low As Double
Const TWO_32 = 4# * 1024# * 1024# * 1024#

Low = LI.LowPart
If Low < 0 Then Low = Low + TWO_32

'Now Low is in the range 0...2^32-1

LI2Double = LI.HighPart * TWO_32 + Low
End Function
Here's an example of the HiResTimer in use:
Dim hrt As HiResTimer, d As Double
Set hrt = New HiResTimer
Debug.Assert hrt.Resolution > 0
MsgBox "Resolution [usecs]:" & hrt.Resolution * 1000000#

hrt.EnterBlock
hrt.ExitBlock
MsgBox "Call overhead [usecs]:" & hrt.ElapsedTime * _

1000000#

hrt.EnterBlock
d = 355# / 113#
hrt.ExitBlock

MsgBox "Elapsed Time [usecs]:" & hrt.ElapsedTime * _
1000000#

Believe it or not, you can time even native-compiled code division. For more information, look
at the MSDN Library description of the kernel APIs used here. On x86 architectures,
resolution is better that 1 microsecond. Be careful, however, of trusting single instance
timings, as you'll find the "resolution" of this performance counter varies over time. In fact,
the overhead of simply calling QueryPerformanceCounter in VB is quite a measurable time
period itself.
Although you can time single operations, you're still better off averaging the time required for
hundreds or thousands of similar operations.
Alessandro Coppo
Rapallo, Italy

Use Toolbar-Style Title Bars To make a form use a small toolbar-
style title bar, set the form's WS_EX_TOOLWINDOW extended style:
Declare Function GetWindowLong Lib "user32" _

Alias "GetWindowLongA" (_
ByVal hwnd As Long, _
ByVal nIndex As Long) As Long

Declare Function SetWindowLong Lib "user32" _

Alias "SetWindowLongA" (_
ByVal hwnd As Long, _
ByVal nIndex As Long, _
ByVal dwNewLong As Long) As Long

Public Const WS_EX_TOOLWINDOW = &H80&
Public Const GWL_EXSTYLE = (-20)
Declare Function SetWindowPos Lib "user32" (_

ByVal hwnd As Long, _
ByVal hWndInsertAfter As Long, _
ByVal x As Long, ByVal y As Long, _
ByVal cx As Long, ByVal cy As Long, _
ByVal wFlags As Long) As Long

Public Const SWP_FRAMECHANGED = &H20
Public Const SWP_NOMOVE = &H2
Public Const SWP_NOZORDER = &H4
Public Const SWP_NOSIZE = &H1
Private Sub Form_Load()
Dim old_style As Long

old_style = GetWindowLong(hwnd, GWL_EXSTYLE)
old_style = SetWindowLong(hwnd, _

GWL_EXSTYLE, old_style Or _
WS_EX_TOOLWINDOW)

SetWindowPos hwnd, 0, 0, 0, 0, 0, _
SWP_FRAMECHANGED Or SWP_NOMOVE Or _
SWP_NOZORDER Or SWP_NOSIZE

End Sub
Rod Stephens
Boulder, Colorado

Use Unadvertised Controls When you open VB5's Components list,
you'll see many controls and libraries not available for your development. Some are controls
you downloaded from Web pages; others come from who knows where.
If you've ever tried adding an unknown control to your IDE, you probably saw an icon added
to your control's palette. However, since you couldn't use the control, you probably just
ignored them all and selected the controls that you're positive came with your copy of VB.
Wait! Open that Component list again and select these items:
Wang Image Admin Control
Wang Image Scan Control
Wang Image Edit Control
Wang Image Thumbnail Control.
Under Windows 98, the name "Kodak" is used, rather than "Wang." Add these items to your
palette, then add them to a form. Select the control and press F1. Up pops the developer's
help on using the controls in your projects.
These may not be the final word on imaging controls, but with all their properties and
methods for image manipulation, conversions, displays, and more, they're leaps and bounds
beyond picture and image controls, and they're free-with Windows 95/OSR2, Windows 98,
and NT4. The one restriction you need to be aware of is that these controls are not
redistributable, and Windows 95 users must download them (from
http://www.eastmansoftware.com) and perform the separate install themselves.
Robert Smith
San Francisco, California

Use VB System Color Constants in API Calls Visual
Basic includes constants, such as vbActiveTitleBar and vbButtonFace, for Windows system
colors, which the user might change through the Control Panel. (In VB3, these constants are
defined in the file CONSTANT.TXT.) When you assign one of these constants to a VB color
property, Visual Basic automatically translates it to the actual color the user has chosen for
that item. You cannot, however, use VB's system color constants directly with API functions,

such as SetPixel, that expect a color as one of their parameters. VB's system color constants
are the same as those defined by the Windows API, except that VB's constants have the high
bit set. You can use this function to translate both VB and Windows system color constants
into the corresponding RGB color value, suitable for use in API calls:
' 32-bit
Option Explicit
Declare Function GetSysColor Lib "User32" (_

ByVal nIndex As Long) As Long
Public Function SysColor2RGB(ByVal lColor As Long) As Long

lColor = lColor And (Not &H80000000)
SysColor2RGB = GetSysColor(lColor)

End Function
For 16-bit versions of VB, replace the GetSysColor declaration with this code:
Declare Function GetSysColor Lib "User" (_

ByVal nIndex As Integer) As Long
Steve Cisco
Perrysburg, Ohio

Watch How You Use Your Booleans
With the introduction of the Boolean data type in VB4, you might be tempted to convert it to
a numeric value using the Val function for storage in a database table. Watch out! Val won't
convert a Boolean into -1 (or 1) as you might expect. Use the Abs or CInt functions,
depending on the format you need:
Val(True) gives 0
CInt(True) gives -1
Abs(True) gives 1
Joe Karbowski
Traverse City, Michigan

Watch Out for "()" When Calling Subroutines To
call a subroutine, you can use the Call statement or simply the name of the subroutine:

Call MyRoutine(firstParameter)
'Or
MyRoutine firstParameter

Notice you don't include the parentheses in the second case. If you do, VB assumes you
mean them as an operator. VB then determines the value of the parameter and passes the
value to the routine, instead of passing the reference as expected. This is apparent in this
example:

Call MyRoutine(Text1)
This passes the text-box control to MyRoutine. If you did it without the Call statement, VB
evaluates Text1, which returns the default property value of the text box:

MyRoutine(Text1)
This default property is the text-box text. So, if the routine expects a control, you pass the
text string from the control instead and will receive a type-mismatch error. To prevent this,
always use the Call statement or don't put parentheses in when calling a subroutine.
Deborah Kurata
Pleasanton, California

Working With Collections
When working with collections, use an error handler to easily determine if a given key exists
in the collection. If you try to access an item from a collection where the key doesn't exist,
you'll get an error. Likewise, if you try to add an item that exists, you'll also get an error. This
example shows an error handler for adding an item to a collection. To trap for errors where
an item exists, trap error code 457:
Private Function BuildCustCol(CustList As ListBox) As _

Collection
On Error GoTo ProcError
Dim colCust As Collection
Dim lngCustCnt As Long
Dim J As Long

Set colCust = New Collection
For J = 0 To CustList.ListCount - 1

lngCustCnt = colCust(CStr(CustList.List(J))) + 1
colCust.Remove (CStr(CustList.List(J)))
colCust.Add Item:=lngCustCnt, _

Key:=CStr(CustList.List(J))
Next J
Set BuildCustCol = colCust
Set colCust = Nothing
Exit Function

ProcError:
Select Case Err

Case 5 'collection item doesn't exist, so add it
colCust.Add Item:=0, _

Key:=CStr(CustList.List(J))
Resume

Case Else
'untrapped error

End Select

End Function
Joe Karbowski
Traverse City, Michigan

Where Did It Go?
Have you ever wondered why your ActiveX DLL with a form doesn't show up in the taskbar?
Because you're showing the form modally (.Show vbModal). VB4 only allows DLLs with a user
interface to be shown modally. VB5, however, has no such limitation. If you want your VB5
DLL to show up in the taskbar, you need to change your code to support showing it
nonmodally.
Joe Karbowski
Traverse City, Michigan

Beginner Watch the Parens If you want to pass a parameter to a
subroutine, use this code:

Call doFormat(txtPerson)
You can also call the subroutine without the Call statement. However, if you don't include the
Call statement, you can't include parentheses:

doFormat (txtPerson)
In VB, expressions in parentheses are evaluated before they're processed. So by putting
parentheses around the control name, you're telling it to evaluate it. Because a control can't
be evaluated, it gives you the value of the default property. This code actually passes the
Text string value-because Text is the default property-to the subroutine instead of passing
the control. Because the routine expects a textbox and not a string, it generates the type
mismatch. Deborah Kurata
Pleasanton, California

Yet Another CenterForm Routine In the April 1997 issue of
VBPJ, you published a tip called "Consider the Taskbar When Centering Forms." You can
center forms more easily with the SystemParametersInfo API call:

Private Declare Function _
SystemParametersInfo Lib "user32" Alias _
"SystemParametersInfoA" (ByVal uAction _
As Long, ByVal uParam As Long, R As Any, _
ByVal fuWinIni As Long) As Long

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type
Private Const SPI_GETWORKAREA = 48
Public Sub CenterForm(frm As Form)

Dim R As RECT, lRes As Long,
Dim lW As Long, lH As Long
lRes = SystemParametersInfo(_

SPI_GETWORKAREA, 0, R, 0)
If lRes Then

With R
.Left = Screen.TwipsPerPixelX * .Left
.Top = Screen.TwipsPerPixelY * .Top
.Right = Screen.TwipsPerPixelX * .Right
.Bottom = Screen.TwipsPerPixelY * .Bottom
lW = .Right - .Left
lH = .Bottom - .Top
frm.Move .Left + (lW - frm.Width) \ 2, _

.Top + (lH - frm.Height) \ 2
End With

End If
End Sub
Nicholas Sorokin
Sarasota, Florida

Write Less CPU-Bound Animations When doing animation,
such as scrolling a label or using picture boxes, I first used the method described by Eric
Bernatchez ("Smoother Control Animation," "101 Tech Tips for VB Developers," Supplement
to the February 1997 issue of VBPJ, page 21). However, I found that while in the Do Loop,
the CPU usage is 100 percent! Windows NT, Windows 95, and Win32 have an API call named
SLEEP. This call suspends the called application for the supplied amount of milliseconds.
When you change the code, the CPU usage on a Pentium 100 drops to 10 percent:
Declare Sub Sleep Lib "kernel32" (_

ByVal dwMilliseconds As Long)

Public Sub Scrolling()
Label1.Left = Me.Width
Do

Sleep 100
Label1.Left = Label1.Left - 60
DoEvents

Loop Until Label1.Left <= -(Label1.Width + 15)
End Sub
The only problem with this method is that your app won't respond to user input while it
sleeps, so don't let it sleep too long.
Derek Robinson
Pretoria, South Africa

Conditionally Compile Your Code Most developers know about
VB4's Conditional Compilation feature, where you can declare Windows APIs for 16-bit and
32-bit operating systems:
#If Win#32 then
 'If running in 32-bit OS
 Declare SomeApi....
#Else
 'If running in 16-bit OS
 Declare SomeApi
#End IF
This same feature applies not only to Windows API statements, but also to your own
functions:
#If Win32 Then
 Dim lRc&
 lRc& = ReturnSomeNumber(35000)
#Else
 Dim lRc%
 lRc% = ReturnSomeNumber(30000)
#End If

#If Win32 Then
 Private Function ReturnSomeNumber_
 (lVar&) As Long
 ReturnSomeNumber = 399999
#Else
 Private Function ReturnSomeNumber_
 (lVar%) As Integer
 ReturnSomeNumber = 30000
#End If

End Function
Carl Denton
Marietta, Georgia

Switch You can often replace an If...Then...Else block with a more compact IIf
function:
' returns the max of two values
maxValue = IIf(first >= second, _

first, second)
Switch is a rarely used function, yet in many cases it proves rather useful as a substitute for
a lengthy If...ElseIf block:
' is "x" negative, positive or null?
Print Switch(x < 0, "negative", x > 0, _

"positive", True, "Null")
Note the last test is True, because the three conditions are mutually exclusive and
exhaustive. Francesco Balena
Bari, Italy

Comment Multiple Lines VB provides only single-line comment
functions: "REM" and "'". If you're looking for another way to comment out a block of code,
use conditional compilation in VB4 instead. Define "COMMENT = 0" in the Conditional
Compilation Arguments field on the Advanced tab in the Options dialog of the Tools menu:
Public Sub TestingSub()

Print "This subroutine is used to"
Print "demonstrate block"
Print "commenting in VB."

#If COMMENT then

Print "This line will not be printed."
Print "Since this is commented out."
Print "VB ignores these lines during compilation."

#End If
End Sub
This trick also works with VB5, but you might find the Comment Block command on the Edit
toolbar much handier.
Frewin Chan
Scarborough, Ontario, Canada

Comment and Uncomment Blocks of Code Visual
Basic 5.0 lets you comment a block of code in a snap and uncomment it later. This feature is
useful in the debug phase, when you don't want to execute a number of statements, but you
don't want to physically delete them either. However, the Comment/Uncomment command
pair isn't present in any menu of the environment, and you can only reach it by enabling the
Edit toolbar. To do this quickly, right-click on any toolbar in the environment and select the
Edit command. Francesco Balena
Bari, Italy

Combine Default with Other Attributes When building an
ActiveX control, you can set a default property or method using the Procedure Attributes
dialog box, after clicking on the Advanced button. However, if your default property also
happens to require another special attribute-as is the case with Caption and Text properties-
you're in trouble because the Procedure ID combo box only permits one selection. Suppose
your ActiveX control exposes a Caption property you want to behave as a regular property-for
example, all keys typed in the Property window are immediately reflected in the control itself.
In order to achieve this behavior, assign the Caption attribute to this property in the
Procedure ID combo box (see tip "Properties That Behave Like Text and Caption"). If you also
want to make it the default property, you must resort to a trick: declare another, hidden
property that delegates to your Caption property, and set this new property as the default
member of the ActiveX control. The name of this property is not important because the user
never sees it:
Property Get DefaultProp() As String
 DefaultProp = Caption
End Property

Property Let DefaultProp(newValue As _
 String)
 Caption = newValue
End Property
Francesco Balena
Bari, Italy

Convert from Fractional to Decimal Numbers
While developing a database front end for hand-tool management, I discovered a need to
handle both fractional and decimal representations of dimensions in the same text box. This
makes it easier on users who worked from a variety of prints to input part feature sizes. To
accomplish this, place this function in the LostFocus event of any text box that can receive
numerical input. You can also cycle through the appropriate text boxes and run the function
against the text value of each. In addition, this function only checks for the inches character
(double quotes) at the end of the text string of fractional dimensions. It also looks for spaces
and/or dashes between whole numbers and fractions and checks for both forward and
backward slashes within fractions. It doesn't work with negative values:
Private Function ReturnDecimalValue(Size As _

String) As String

Dim strSize As String
Dim iGap As Integer
Dim iSlash As Integer
Dim sWhole As Single
If Size <> "" Then Size = LTrim(RTrim(Size))
'previous code may have stripped text to nothing
'if it was just spaces, so test
If Size <> "" Then

'strip off inch character (double
'quotes) if it's there
If Right(Size, 1) = Chr$(34) Then _

Size = Left(Size, Len(Size) - 1)
iGap = InStr(Size, "-")
If iGap = 0 Then iGap = InStr(Size, " ")
If iGap Then sWhole = CSng(Left(Size, iGap - 1))
strSize = Right(Size, Len(Size) - iGap)
iSlash = InStr(strSize, "/")
'user may have input backward slash
'in fraction instead of forward slash;
'verify
If iSlash = 0 Then iSlash = InStr(strSize, "\")
'convert result to decimal form for
'saving in database
If iSlash Then Size = CStr(sWhole + _

(CSng(Left(strSize, iSlash - 1)) / _
CSng(Right(strSize, Len(strSize) - iSlash))))

End If
ReturnDecimalValue = Size

End Function
Randall Arnold
Coppell, Texas

Collect User Requirements With Scenarios When
talking to the user or subject-matter expert about an application's requirements, write the
requirements in the form of scenarios. A scenario both defines the requirement and provides
a list of steps detailing how the resulting feature will be used. For example, instead of writing
a requirement to "process payroll," your scenario might be to select an employee from a list
of existing employees, to enter the time allocated to the project for each employee, and so
on. This clarifies requirements and helps you better visualize how users will use the feature.
Once you understand the reasoning behind the request, you might even find a better way to
meet the requirement. You can then use these scenarios as the test plan for the feature.
Deborah Kurata
Pleasanton, California

Code-Commenting Shortcuts Instead of going to the Edit menu to
comment out a section of code, you can add the comment command to the shortcut menu
you access by right-clicking in a code window. Select View/Toolbars/Customize. On the
Toolbars tab of the Customize dialog, click on the "Shortcut Menus" check box. On the toolbar
that pops up, click on Code Windows... Code Window. On the Commands tab of the
Customize dialog, select "Edit" in the categories list box. Drag and drop "Comment Block" and
"Uncomment Block" from the "Commands list" box to the code window menu. Hit the "Close"
button on the Customize dialog. Now go to a code window, drag the mouse over a section of
code, right-click, and select "Comment code." Greg Ellis
St. Louis, Missouri

Close VB Before Compiling When you're finished tinkering with your
apps, close and restart VB before making the final EXE. This simple action can reduce the size
of your EXE by 10 to 30 percent (many professional programmers also recommend restarting
Windows before building an EXE). If you don't close and restart VB, your EXE may contain
some garbage: VB doesn't fully clean up all the data structures or variables you used during
development. Restarting VB also safeguards against some mysterious GPFs. If you have an
app that runs fine in the development environment but GPFs when it's run as an EXE, try
closing and restarting. Another option is to compile from the "command line." To do so from
either Program Manager or File Manager, select Run from the File menu, and enter:
 C:\VB\VB.EXE /MAKE D:\APPPATH\MYPROJ.MAK
Patrick O'Brien & Karl Peterson

Close Forms Uniformly To close forms uniformly, treat the system
menu's Close command and your File menu's Exit command in the same manner. In your Exit
command, simply unload the form. Let the form's QueryUnload event handler see if it is safe
to exit. If not, cancel the Exit by setting Cancel to True:
Private Sub mnuFileExit_Click()

Unload Me
End Sub
Private Sub Form_QueryUnload(Cancel _

As Integer, UnloadMode As Integer)
Cancel = (MsgBox("Are you sure you " & _

"want to exit?", vbYesNo) = vbNo)
End Sub
Rod Stephens
Boulder, Colorado

Close all MDI Children Simply
This code allows you to close all the MDI child forms in an MDI form at once. First, create a
menu item in the MDI form, then paste in this code:
Private Sub mnuCloseAll_Click()

Screen.MousePointer = vbHourglass
Do While Not (Me.ActiveForm Is Nothing)

Unload Me.ActiveForm
Loop
Screen.MousePointer = vbDefault

End Sub
Clean Up Project File Paths Before Sharing
Source Code As you work with a VB project, the project file--VBP--can become
littered with relative path references such as "..\..\..\..\myfolder\myform.frm". The project
loads, but only on your machine. If you send the project to someone else, or move it to
another path on your own machine, you need to edit the project file to remove the
ambiguous entries. You can avoid this by ensuring that all the needed files are indeed in the
same directory as the project file. It's not uncommon to load a file from a different directory,
in which case VB does not automatically move it into your project directory. Load the project
file into Notepad and edit out all path references, leaving only the actual file names. When VB
goes to load the project, it looks for them in the current directory. Ron Schwarz
Mt. Pleasant, Michigan

Cheap Focus Tracking The Lost_Focus and Got_Focus events are the
most-used events for implementing validation and text highlighting. Wouldn't it be nice to
respond instantly to these events and to do it from a single routine for all controls without
the aid of a subclassing control? Here's the answer. Place a timer control on your form, set its

Interval property to 100 and set Enabled = True. Name the control tmrFocusTracking. Code
its Timer event alike this:
Private Sub tmrFocusTracking_Timer()
 Dim strControlName As String
 Dim strActive As String
 strControlName = _
 Me.ActiveControl.Name

 Do
 strActive = Me.ActiveControl.Name
 If strControlName <> strActive _
 Then
 Print strControlName & _
 " - Lost Focus", _
 strActive & " - Got Focus"
 strControlName = strActive
 End If
 DoEvents
 Loop
End Sub
To implement universal highlighting, replace the Print statement with this code:
Me.Controls(strActive).SelStart = 0
Me.Controls(strActive).SelLength = _
 Len(Me.Controls(strActive))
To implement validation, replace the Print statement with a call to a validation routine. Use
strActive in a Select Case structure. At the moment where the Print statement would occur,
strActive is equal to the control that just Got Focus, and strControlName holds the name of
the control that just Lost Focus. Don't place this routine in anything but a timer; otherwise,
your program hangs once the routine is called. Even the timer here never makes it to a
second interval. For a given control, don't write validation code both in the
Got_Focus/Lost_Focus events, and in code called by this routine. Doing so might cause
unpredictable results. John S. Frias
Santa Maria, California

Change Display Settings on the Fly When writing a game for
Windows 95, set the display resolution to 640-by-480, set the color palette to True Color
when it runs, and restore it to its initial mode when it ends. Use this function to implement it:
'- Declares
Private Declare Function lstrcpy _

Lib "kernel32" Alias "lstrcpyA" _
(lpString1 As Any, lpString2 As Any) _
As Long

Const CCHDEVICENAME = 32
Const CCHFORMNAME = 32
Private Type DEVMODE

dmDeviceName As String * CCHDEVICENAME
dmSpecVersion As Integer
dmDriverVersion As Integer
dmSize As Integer
dmDriverExtra As Integer
dmFields As Long
dmOrientation As Integer
dmPaperSize As Integer
dmPaperLength As Integer
dmPaperWidth As Integer
dmScale As Integer
dmCopies As Integer
dmDefaultSource As Integer
dmPrintQuality As Integer
dmColor As Integer

dmDuplex As Integer
dmYResolution As Integer
dmTTOption As Integer
dmCollate As Integer
dmFormName As String * CCHFORMNAME
dmUnusedPadding As Integer
dmBitsPerPel As Integer
dmPelsWidth As Long
dmPelsHeight As Long
dmDisplayFlags As Long
dmDisplayFrequency As Long

End Type
Private Declare Function _

ChangeDisplaySettings Lib _
"User32" Alias "ChangeDisplaySettingsA" (_
ByVal lpDevMode As Long, _
ByVal dwflags As Long) As Long

'- code
' Here is the function that sets the display
' mode. Width is the width of screen, Height
' is the height of screen, Color is the number
' of bits per pixel. Set the Color value to -1
' if you only want to change the screen
' resolution.
Public Function SetDisplayMode(Width As _

Integer,Height As Integer, Color As _
Integer) As Long

Const DM_PELSWIDTH = &H80000
Const DM_PELSHEIGHT = &H100000
Const DM_BITSPERPEL = &H40000
Dim NewDevMode As DEVMODE
Dim pDevmode As Long
With NewDevMode

.dmSize = 122
If Color = -1 Then

.dmFields = DM_PELSWIDTH Or DM_PELSHEIGHT
Else

.dmFields = DM_PELSWIDTH Or _
DM_PELSHEIGHT Or DM_BITSPERPEL

End If
.dmPelsWidth = Width
.dmPelsHeight = Height

If Color <> -1 Then
.dmBitsPerPel = Color

End If
End With
pDevmode = lstrcpy(NewDevMode, NewDevMode)
SetDisplayMode = ChangeDisplaySettings(pDevmode, 0)
End Function
You can change the display mode easily with this function. For example, write this code that
changes the resolution to 640-by-480 and the color palette to 24-bit True Color:
i = SetDisplayMode(640, 480, 24)
If the function is successful, it returns zero.
Huang Xiongbai
Shanghai, China

Center Forms with Taskbar Visible Just about every VB
developer uses the Move (Screen.Width - Width) \ 2, (Screen.Height - Height) \ 2 method to
center the forms on screen. However, when the user has the Windows 95 or NT 4.0 taskbar
visible, your form centers on screen but doesn't take into account the position of the taskbar

itself. The CenterForm32 routine centers a form in available screen area, taking into account
the taskbar. Add this code to the Declarations section of a module, and put the code
CenterForm32 Me on the Form_Load event of the forms you want to center:
Option Explicit
Private Const SPI_GETWORKAREA = 48
Private Declare Function _

SystemParametersInfo& Lib "User32" _
Alias "SystemParametersInfoA" (_
ByVal uAction As Long, _
ByVal uParam As Long, lpvParam As Any, _
ByVal fuWinIni As Long)

Private Type RECT
Left As Long
Top As Long
Right As Long
Bottom As Long

End Type

Public Function CenterForm32 (frm As Form)
Dim ScreenWidth&, ScreenHeight&, _

ScreenLeft&, ScreenTop&
Dim DesktopArea As RECT
Call SystemParametersInfo (_

SPI_GETWORKAREA, 0, DesktopArea, 0)
ScreenHeight = (DesktopArea.Bottom - _

DesktopArea.Top) * Screen.TwipsPerPixelY
ScreenWidth = (DesktopArea.Right - _

DesktopArea.Left) * Screen.TwipsPerPixelX
ScreenLeft = DesktopArea.Left * Screen.TwipsPerPixelX
ScreenTop = DesktopArea.Top * Screen.TwipsPerPixelY
frm.Move (ScreenWidth - frm.Width) _

\ 2 + ScreenLeft, (ScreenHeight - _
frm.Height) \ 2 + ScreenTop

End Function
Miguel Santos
Aveiro, Portugal

Center Forms on Screen A popular code snippet lets you center any
form on the screen, regardless of the current screen resolution. You now can reach the same
result by simply assigning the value vbStartUpScreen (=2) to the form's StartUpPosition new
property. You can even center a form within its parent window by assigning the
vbStartUpOwner (=1) value. You can set this property from the Property window. When a
form is supposed to be centered within its parent window, remember to add a second
argument to the Show method:
Form2.Show vbModal, Me
Francesco Balena
Bari, Italy

'
Private Declare Sub keybd_event Lib "user32" (ByVal bVk As _

Byte, ByVal bScan As Byte, ByVal dwFlags As Long, _
ByVal dwExtraInfo As Long)

Public Enum SystemKeyShortcuts
ExplorerNew = &H45 ' Asc("E")
FindFiles = &H46 ' Asc("F")
MinimizeAll = &H4D ' Asc("M")
RunDialog = &H52 ' Asc("R")
StartMenu = &H5B ' Asc("[")
StandbyMode = &H5E ' Asc("^") -- Win98 only!

End Enum

Public Sub SystemAction(VkAction As SystemKeyShortcuts)
Const VK_LWIN = &H5B
Const KEYEVENTF_KEYUP = &H2
Call keybd_event(VK_LWIN, 0, 0, 0)
Call keybd_event(VkAction, 0, 0, 0)
Call keybd_event(VK_LWIN, 0, KEYEVENTF_KEYUP, 0)

End Sub
Randy Birch
East York, Ontario, Canada

Browse VB Command as You Type When you refer to an
object in VB5, you get a drop-down list of that object's properties and methods. But, did you
know that the statements and functions of the VB language itself are just a big list of
properties and methods? You can view this list at any time in a VB code window by typing the
name of the library in which this code resides:

VBA.
Once you type the dot after VBA, the bulk of the VB language drops down. You can then
select the language element you want from the list. This is a great help when you're trying to
remember the name of a VB language element that you don't often use. Jeffrey McManus
'San Francisco, California

Dim x As Integer Dim y As Integer Dim z As Integer x = 10 y = 20 z = 0 ''''Assume function max
returns the maximum ''''of the two if (z = max(x, y)) > 0 then Msgbox CStr(z) Else Msgbox "How
Come?" End if
'Baskar S. Ganapathy
'Walnut Creek, California

'stop multiple event cascades
Private Sub Form_Resize()

Static Executing As Boolean
If Executing Then

Exit Sub
End If

Executing = True
If Width > 6000 Then

Width = 6000
GoDoSomeStuff

End If
Executing = False

End Sub
'Ron Schwarz
'Mt. Pleasant, Michigan

'Bruce Goldstein
'Highlands Ranch, Colorado

#If Win16 Then Declare Function LockWindowUpdate Lib _ "User" (ByVal hWndLock As
Integer) As Integer #Else Declare Function LockWindowUpdate Lib _ "user32" (ByVal hWndLock
As Long) As Long #End If

'vb tip lockwindowupdate
Dim lErr as Long
Dim x as Integer

'No list box flicker, it will appear blank for
'just a moment...
Screen.MousePointer = vbHourglass
lErr = LockWindowUpdate(Me.hWnd)

For x = 1 to 5000
lstMyListbox.AddItem CStr(x)

Next

Now all the information is there:

lErr = LockWindowUpdate(0)
Screen.MousePointer = vbDefault

